With competitive price and timely delivery, sincerely hope to be your supplier and partner.
contains other products and information you need, so please check it out.
Consumers and fleets considering electric vehicles (EVs)—which include all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)—need access to charging stations. For most drivers, this starts with charging at home or at fleet facilities. Charging stations at workplaces and public destinations may help bolster market acceptance by offering more flexible charging opportunities at commonly visited locations. Community leaders can find out more through EV readiness planning, including case studies of ongoing successes. The EVI-Pro Lite tool is also available to estimate the quantity and type of charging infrastructure necessary to support regional adoption of EVs by state or city/urban area and to determine how EV charging will impact electricity demand.
Charging the growing number of EVs in use requires a robust network of stations for both consumers and fleets. The Alternative Fueling Station Locator allows users to search for public and private charging stations. Quarterly reports on EV charging station trends show the growth of public and private charging and assess the current state of charging infrastructure in the United States. Report new charging stations for inclusion in the Station Locator using the Submit New Station form. Suggest updates to existing charging stations by selecting “Report a change” on the station details page.
Learn more about state electrification planning and funding, including information about the Bipartisan Infrastructure Law. For information on currently available charging infrastructure models, see the Electric Drive Transportation Association’s GoElectricDrive website and Plug In America's Get Equipped publication, which include information on charging networks and service providers. For a list of ENERGY STAR certified chargers, see the U.S. Environmental Protection Agency’s Product Finder list.
The charging infrastructure industry has aligned with a common standard called the Open Charge Point Interface (OCPI) protocol with this hierarchy for charging stations: location, EV charging port, and connector. The Alternative Fuels Data Center and the Station Locator use the following charging infrastructure definitions:
Charging equipment for EVs is classified by the rate at which the batteries are charged. Charging times vary based on how depleted the battery is (i.e., state-of-charge), how much energy it holds (i.e., capacity), the type of battery, the vehicle's internal charger capacity, and the type of charging equipment (e.g., charging level, charger power output, and electrical service specifications). The charging time can range from less than 20 minutes using DC fast chargers to 20 hours or more using Level 1 chargers, depending on these and other factors. When choosing equipment for a specific application, many factors, such as networking, payment capabilities, and operation and maintenance, should be considered.
Increasing available public and private charging equipment requires infrastructure procurement. Learn about how to successfully plan for, procure, and install charging infrastructure.
Once charging infrastructure has been procured and installed, it must be properly operated and maintained. Learn about charging infrastructure operation and maintenance considerations.
Another standard (SAE J3068) was developed in 2018 for higher rates of AC charging using three-phase power, which is common at commercial and industrial locations in the United States. Some components of the standard were adapted from the European three-phase charging standards and specified for North American AC grid voltages and requirements. In the United States, the common three-phase voltages are typically 208/120 V, 480/277 V. The standard targets power levels between 6 kW and 130 kW.
Extreme fast chargers (XFC), such as the SAE DC Level 2 standard, are capable of power outputs of up 350 kW and higher and are rapidly being deployed in the United States light-duty and select medium-duty applications (e.g., for in-route charging of electric buses). XFC will also support long-dwell overnight charging for medium- and heavy-duty vehicle applications. A 2022 report looks at the requirements for charging stations that could support in-route charging for heavy-duty EVs. While XFC are currently available from several charging manufacturers, the U.S. Department of Energy's Vehicle Technologies Office is pursuing research that will bridge the technology gaps associated with implementing XFC networks in the United States. A 2017 report highlights technology gaps at the battery, vehicle, and infrastructure levels. In particular, many EVs on the roads today are not capable of charging at rates higher than 150 kW. However, vehicle technology is advancing, and most new EV models will be able to charge at higher rates, enabling the use of XFC. You can find additional resources on EV charging and advanced charging system research efforts from the National Renewable Energy Laboratory. For answers to frequently asked questions about the Megawatt Charging System and SAE J3271, see the fact sheet on Charging for Heavy-Duty Electric Trucks from Argonne National Laboratory.
Inductive charging equipment, which uses an electromagnetic field to transfer electricity to an EV without a cord, has been introduced commercially for installation as an aftermarket add-on. Some currently available wireless charging stations operate at power levels comparable to Level 2, though this technology is more common for transit or other fleet operations at higher power levels comparable to DC fast. The U.S. Department of Energy is conducting research to investigate the feasibility of high-powered wireless charging. More information on inductive charging research efforts is available from the National Renewable Energy Laboratory.
EV infrastructure is defined as structures, machinery, and equipment necessary and integral to support a EV, including battery charging stations, rapid charging stations, and battery exchange stations. A battery charging station is defined as an electrical component assembly or cluster of component assemblies designed specifically to charge batteries within a EV. A rapid charging station is defined as an industrial grade electrical outlet that allows for faster recharging of EV batteries through higher power levels. A battery exchange station is defined as a fully automated facility that will enable a EV with a swappable battery to enter a drive lane and exchange the depleted battery with a fully charged battery through a fully automated process. Infrastructure must meet or exceed any applicable state building standards, codes, and regulations.
(Reference Revised Code of Washington 19.27.540, 19.28.281, and 47.80.090)
Contact us to discuss your requirements of lcd screen manufacturer, customized LCD. Our experienced sales team can help you identify the options that best suit your needs.